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This is the fifth in a series of TechNotes on the subject of applied curve mathematics in Adobe  
FlashTM.  Each TechNote provides the mathematical foundation for a set of Actionscript 
examples.   
 
 
Interpolating Splines and Animation 
 
An important consideration in computer-generated tweening is smooth motion between irregularly 
spaced keyframes.  Cubic splines are often an ideal solution.  A natural cubic spline produces a 
2C -continuous interpolation, although the parametric version is computationally expensive.  

Often, a 1C -continuous curve is adequate.  Catmull-Rom splines, as often referred to in both 
online and printed literature, are actually a specific instance of a family of splines derived by 
Catmull and Rom [1].   These splines exhibit 1C  continuity and have a simple piecewise 
construction.  

 
 

Relationship to Hermite Interpolation 
 
It seems as if almost every cubic curve construction bears some resemblance to Hermite curves.  
Consider the case of fitting a cubic curve between two points.  In addition to passing through the 
two points, two additional constraints are required to define the curve.  Suppose derivative values 
are specified at each endpoint, as illustrated in the following diagram. 
 
 

 
 
This situation is very similar to the Hermite curve except that the above curve does not extend 
beyond the control points.  As the tangents influence the shape of the curve, tangents may either 
be explicitly provided or inferred from additional control points. 
 
 
Single-Curve Construction 
 
Consider the derivation of a single curve, P(t), that interpolates the points 0P  and 1P  above.   



Suppose that additional control points, 1−P  and 2P  are specified as shown below. 
 
 

 
 
 
P(t) is a cubic curve with the conditions that t = 0 yields 0P  and t = 1 yields 1P .  The auxiliary 

points 1−P  and 2P  are used to adjust the shape of the curve by implicitly defining tangents, 
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where α is between 0 and 1.  This definition makes the tangent at each endpoint parallel to the 
chord between adjacent control points.  The general equation of the curve is 
 

dctbtattP +++= 23)(           [1] 
 
The coefficients can be determined from the geometric constraints provided by endpoint and 
tangent specifications.  The process is similar to the derivation of Hermite interpolation, 
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Since cbtattP ++= 23)(' 2  
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If 0)0(' SP =  and 1)1(' SP = , equation [3] yields,  
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From equation [2], 
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Equations [4a] and [4b] together imply 
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Every now and then, it is useful to work one of these out in full. If 
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then IMM =−1 .  Let ijcCM ==−1 from which 
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Although 16 equations in 16 unknowns seem intimidating by hand, half the equations are trivial.   
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The remaining equations are 
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Cranking through the algebra yields 
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Equation [5b] represents the basis matrix for the so-called cardinal splines.  The parameter, α , 
represents the spline’s ‘tension’.  As the tension parameter approaches 1, the bend at each knot 
is less, as if the spline was a rope that was being tightened while still passing through all the 
knots.   
 



A tension value of ½ is commonly used to represent the Catmull-Rom spline.  Substituting into 
[5b] yields the Catmull-Rom basis 
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Substituting [6] into the standard matrix equation for a cubic curve yields 
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Single Curve Demo 
 
 

 
 



This demo illustrates the use of the CRBasic class (Flash source no longer online).  This class 
generates a single cubic curve from 0P  to 1P  .  The auxiliary control points, 1−P  and 2P  are 
interactively generated using tangent handles.   
 
The demo allows two control points to be added to the drawing area.  Tangent handles are 
automatically generated.  Drag the handles to new locations to study the effect on the curve.  
Load the CRBasic class and study the __coef() method to see the direct application of equation 
[7].  
 
 
Interpolating Multiple Points and Parameterization 
 
Once the generation of a single cubic curve is understood, the next step is to apply the process in 
a piecewise manner to fit a number of datapoints.  The i-th curve segment is generated between 
points iP  and 1+iP  using the sequence of points, 1−iP , iP , 1+iP , and 2+iP  , as illustrated below. 
 
 

 
 
 
 
As each new segment is generated, the slopes match at the interior control points, providing 1C  
continuity.  There are two new issues, however, in generating the complete curve. 
 
 
Auxiliary Control Points 
 
If the curve is to interpolate all user-supplied knots, additional control points must be supplied at 
each end of the curve.  There are several approaches for resolving this issue.  The user may wish 
interactive control over setting the points.  If the spline is to be used in animation, it is valuable to 
have the control points automatically generated.  Some implementations duplicate the end knots.  
This can cause kinks in the generated curve.   
 
Another method is reflection.  For example, the segment 01 PP −  is reflected about 0P  to 

generate 1−P .  While this ensures the curve is ‘moving’ in an intuitive direction at each endpoint, it 
can sometimes result in ‘pinching’, as will be seen in the examples. 
 
The CatmullRom class allows the user to either explicitly specify auxiliary control points or have 
them automatically computed.  For illustrative purposes, the latter option is performed with a 
simple reflection.  Either mode can be selected through a setter function, i.e. 
 
var __myCurve:CatmullRom = new CatmullRom(); 
__myCurve.tangent = CatmullRom.EXPLICIT; 
 



or 
 
__myCurve.tangent = CatmullRom.AUTO; 
 
The default tangent mode is AUTO. 
 
 
Parameterization 
 
The curve is piecewise cubic.  Global parameter values of t between 0 and 1 must be mapped to 
the appropriate segment and a local parameter value between 0 and 1.  For purposes of this 
discussion, t is used for the normal (global) curve parameter and *t is used for the local 
parameter.  If there are a total of N knots, then 
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are the trivial mappings.  As the user varies t between 0 and 1, the appropriate segment index, i, 
and local parameter value, *t must be computed.  The specific computation determines how the 
curve is parameterized.   
 
A common parameterization is chord-length.  The cumulative distance between each knot is 
divided by the total length to produce a parameter that varies from 0 to 1.  The user-specified 
value of t is compared segment-by-segment to determine the appropriate curve segment.  The 
parameter value is mapped into a local range of [0,1] in order to be evaluated by equation [7]. 
 
A different parameterization is the uniform formula, 
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The latter parameterization is the default (__myCurve.parameterize = UNIFORM).  For 
comparative purposes, the chord-length parameterization can be selected with 
__myCurve.parameterize = CHORD_LENGTH.   The two parameterizations apply to the same 
set of geometric constraints, so the same curve plot is generated.   
 
While this parameterization is useful for drawing the spline, it has a drawback in terms of 
animation.  Ideally, an object moving along the curve should do so with constant velocity.  Equal 
increments in parameter, t, should result in equal distance along the curve.  This is not achieved 
with chord-length or similar parameterization, as illustrated in the following example.  Consider 
the control points, 
 
(-10,0)  (0,200)  (100,200)  and  (110,300).  The Catmull-Rom spline fitting these control points is 
shown below (in the Flash Stage coordinate space) with markers placed at a distance of 0.1 in t . 
 
 



 
 
 
Notice that the distance between markers is not constant near the bends at the second and third 
control points, even though they appear pretty close to constant elsewhere.  As t is varied 
uniformly between 0 and 1, an object moving along the curve will move faster and then slower 
around those bends than it would at other points on the curve. 
 
The cure to this situation is an arc-length parameterization, which is a topic that will have to wait 
for a future TechNote. 
 
 
Piecewise Cubic Implementation 
 
The cubic coefficients for each segment are precomputed, based on the specified method for 
endpoint tangents.  For the i-th control point, the direct application of equation [7] for the x-
coordinate yields 
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An example is illustrated below. 
 



 
 
 
 
Notice how the curve ‘pinches’ slightly against the chord at each endpoint as a result of the pure 
reflection of the first and last segments about the endpoints. 
 
The curve moves very smoothly through each knot.  The Catmull-Rom spline has the additional 
benefit that modification of a single knot only affects the curve near that knot (local control).  
Since the Catmull-Rom blending functions do not sum to unity, the convex hull property is lost. 
 
An arc-length parameterization and a little more flexibility with the auxiliary control points will 
provide the basis for a general path-tweening class. 
 
 
Closed Loops 
 
The auxiliary control points at the beginning and end of the Catmull-Rom spline provide flexibility 
for a variety of curve shapes, including closed loops.  A common misconception among beginning 
students is that these endpoints somehow form ‘tangent handles’.  Recall that the tangent at any 
knot is parallel to the chord between previous and successive knots.  One of the simplest 
strategies to create a smooth, closed loop is to place the outermost control points along the 
chords into and out of the first knot.  This is illustrated in the following diagram. 
 



 
 

 
The knots are numbered 0-5 (the last knot is automatically added when the closed property is 
set).  The red marker indicates the first auxiliary control point.  The green marker indicates the 
outermost auxiliary control point.  The direction of the vector from initial knot to each control point 
is along the chord emanating from the first knot.  The distance from first knot to both the second 
and next-to-last knots determines the distance along each chord to place the auxiliary control 
points.  The first auxiliary control point is placed along the chord from the first knot to the next-to-
last knot, but at a distance equal to that from the first to second knot.  The process is reversed for 
the outermost auxiliary control point.   
 
The method illustrated here was chosen for ease of illustration.  The graphic illustration should 
convince you of at least G-1 continuity.  What would have to be modified for C-1? 
 
 
 
References 
 
1)  Catmull, E. and Rom, R., “A Class of Local Interpolating Splines,”  Computer Aided Geometric 
Design, R.E. Barnhill and R.F. Reisenfeld, Editors, Academic Press, NY, 1974, pp. 317-326. 
 
2)  Kochanek, D.H., and Bartels, R., “Interpolating Splines with Local Tension, Continuity, and 
Bias,” SIGGRAPH Conference Proceedings, July 1984, pp. 33-41. 


