
TechNote TN-06-001

Catmull-Rom Splines

Jim Armstrong
Singularity

January 2006

This is the fifth in a series of TechNotes on the subject of applied curve mathematics in Adobe
FlashTM. Each TechNote provides the mathematical foundation for a set of Actionscript
examples.

Interpolating Splines and Animation

An important consideration in computer-generated tweening is smooth motion between irregularly
spaced keyframes. Cubic splines are often an ideal solution. A natural cubic spline produces a
2C -continuous interpolation, although the parametric version is computationally expensive.

Often, a 1C -continuous curve is adequate. Catmull-Rom splines, as often referred to in both
online and printed literature, are actually a specific instance of a family of splines derived by
Catmull and Rom [1]. These splines exhibit 1C continuity and have a simple piecewise
construction.

Relationship to Hermite Interpolation

It seems as if almost every cubic curve construction bears some resemblance to Hermite curves.
Consider the case of fitting a cubic curve between two points. In addition to passing through the
two points, two additional constraints are required to define the curve. Suppose derivative values
are specified at each endpoint, as illustrated in the following diagram.

This situation is very similar to the Hermite curve except that the above curve does not extend
beyond the control points. As the tangents influence the shape of the curve, tangents may either
be explicitly provided or inferred from additional control points.

Single-Curve Construction

Consider the derivation of a single curve, P(t), that interpolates the points 0P and 1P above.

Suppose that additional control points, 1−P and 2P are specified as shown below.

P(t) is a cubic curve with the conditions that t = 0 yields 0P and t = 1 yields 1P . The auxiliary

points 1−P and 2P are used to adjust the shape of the curve by implicitly defining tangents,

)(
)(

022

110

PPD
PPD

−=

−= −

α

α

where α is between 0 and 1. This definition makes the tangent at each endpoint parallel to the
chord between adjacent control points. The general equation of the curve is

dctbtattP +++= 23)([1]

The coefficients can be determined from the geometric constraints provided by endpoint and
tangent specifications. The process is similar to the derivation of Hermite interpolation,

)()1('
)()0('

)1(
)0(

02

11

1

0

PPP
PPP

PP
PP

−=

−=

=

=

−

α

α
 [2]

Since cbtattP ++= 23)(' 2

cbaP
cP

dcbaP
dP

++=

=

+++=

=

23)1('
)0('
)1(
)0(

 [3]

If 0)0(' SP = and 1)1(' SP = , equation [3] yields,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

d
c
b
a

S
S
P
P

0123
0100
1111
1000

1

0

1

0

 [4a]

From equation [2],

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

2

1

0

1

1

0

1

0

00
00
0100
0010

P
P
P
P

S
S
P
P

αα

αα
 [4b]

Equations [4a] and [4b] together imply

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⇒

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

αα

αα

αα

αα

00
00
0100
0010

0123
0100
1111
1000

00
00
0100
0010

0123
0100
1111
1000

1

2

1

0

1

d
c
b
a

P
P
P
P

d
c
b
a

 [4c]

Every now and then, it is useful to work one of these out in full. If

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0123
0100
1111
1000

M

then IMM =−1 . Let ijcCM ==−1 from which

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
0100
0010
0001

0123
0100
1111
1000

44434241

34333231

24232221

14131211

cccc
cccc
cccc
cccc

 [5a]

Although 16 equations in 16 unknowns seem intimidating by hand, half the equations are trivial.

1
0
0

0

33

343231

444342

41

=

===

===

=

c
ccc
ccc

c

The remaining equations are

123
023
023
023
0
0
1
0

342414

332313

322212

312111

44342414

43332313

42322212

41312111

=++

=++

=++

=++

=+++

=+++

=+++

=+++

ccc
ccc
ccc
ccc
cccc
cccc
cccc
cccc

Cranking through the algebra yields

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−

=−

0001
0100
1233
1122

1M

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−−

−−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⇒

0010
00

2332
22

00
00
0100
0010

0001
0100
1233
1122

αα

αααα

αααα

αα

αα

d
c
b
a

 [5b]

Equation [5b] represents the basis matrix for the so-called cardinal splines. The parameter, α ,
represents the spline’s ‘tension’. As the tension parameter approaches 1, the bend at each knot
is less, as if the spline was a rope that was being tightened while still passing through all the
knots.

A tension value of ½ is commonly used to represent the Catmull-Rom spline. Substituting into
[5b] yields the Catmull-Rom basis

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−−

=

0020
0101
1452
1331

2/1

002/20
02/102/1
2/12/42/52/2
2/12/32/32/1

cB [6]

Substituting [6] into the standard matrix equation for a cubic curve yields

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−−

=

−

2

1

0

1

23

0020
0101
1452
1331

]1[)(

P
P
P
P

ttttP [7]

Single Curve Demo

This demo illustrates the use of the CRBasic class (Flash source no longer online). This class
generates a single cubic curve from 0P to 1P . The auxiliary control points, 1−P and 2P are
interactively generated using tangent handles.

The demo allows two control points to be added to the drawing area. Tangent handles are
automatically generated. Drag the handles to new locations to study the effect on the curve.
Load the CRBasic class and study the __coef() method to see the direct application of equation
[7].

Interpolating Multiple Points and Parameterization

Once the generation of a single cubic curve is understood, the next step is to apply the process in
a piecewise manner to fit a number of datapoints. The i-th curve segment is generated between
points iP and 1+iP using the sequence of points, 1−iP , iP , 1+iP , and 2+iP , as illustrated below.

As each new segment is generated, the slopes match at the interior control points, providing 1C
continuity. There are two new issues, however, in generating the complete curve.

Auxiliary Control Points

If the curve is to interpolate all user-supplied knots, additional control points must be supplied at
each end of the curve. There are several approaches for resolving this issue. The user may wish
interactive control over setting the points. If the spline is to be used in animation, it is valuable to
have the control points automatically generated. Some implementations duplicate the end knots.
This can cause kinks in the generated curve.

Another method is reflection. For example, the segment 01 PP − is reflected about 0P to

generate 1−P . While this ensures the curve is ‘moving’ in an intuitive direction at each endpoint, it
can sometimes result in ‘pinching’, as will be seen in the examples.

The CatmullRom class allows the user to either explicitly specify auxiliary control points or have
them automatically computed. For illustrative purposes, the latter option is performed with a
simple reflection. Either mode can be selected through a setter function, i.e.

var __myCurve:CatmullRom = new CatmullRom();
__myCurve.tangent = CatmullRom.EXPLICIT;

or

__myCurve.tangent = CatmullRom.AUTO;

The default tangent mode is AUTO.

Parameterization

The curve is piecewise cubic. Global parameter values of t between 0 and 1 must be mapped to
the appropriate segment and a local parameter value between 0 and 1. For purposes of this
discussion, t is used for the normal (global) curve parameter and *t is used for the local
parameter. If there are a total of N knots, then

1
*

0
*

)(,11

)(,00

−===>=

==⇒=

NPtPtt

PtPtt

are the trivial mappings. As the user varies t between 0 and 1, the appropriate segment index, i,
and local parameter value, *t must be computed. The specific computation determines how the
curve is parameterized.

A common parameterization is chord-length. The cumulative distance between each knot is
divided by the total length to produce a parameter that varies from 0 to 1. The user-specified
value of t is compared segment-by-segment to determine the appropriate curve segment. The
parameter value is mapped into a local range of [0,1] in order to be evaluated by equation [7].

A different parameterization is the uniform formula,

))1(()1(
)1,1)1((min(

* tNfloortNt
NtNfloori

−−−=

−+−=

The latter parameterization is the default (__myCurve.parameterize = UNIFORM). For
comparative purposes, the chord-length parameterization can be selected with
__myCurve.parameterize = CHORD_LENGTH. The two parameterizations apply to the same
set of geometric constraints, so the same curve plot is generated.

While this parameterization is useful for drawing the spline, it has a drawback in terms of
animation. Ideally, an object moving along the curve should do so with constant velocity. Equal
increments in parameter, t, should result in equal distance along the curve. This is not achieved
with chord-length or similar parameterization, as illustrated in the following example. Consider
the control points,

(-10,0) (0,200) (100,200) and (110,300). The Catmull-Rom spline fitting these control points is
shown below (in the Flash Stage coordinate space) with markers placed at a distance of 0.1 in t .

Notice that the distance between markers is not constant near the bends at the second and third
control points, even though they appear pretty close to constant elsewhere. As t is varied
uniformly between 0 and 1, an object moving along the curve will move faster and then slower
around those bends than it would at other points on the curve.

The cure to this situation is an arc-length parameterization, which is a topic that will have to wait
for a future TechNote.

Piecewise Cubic Implementation

The cubic coefficients for each segment are precomputed, based on the specified method for
endpoint tangents. For the i-th control point, the direct application of equation [7] for the x-
coordinate yields

ix

iix

iiiix

iiiix

xd
xxc

xxxxb
xxxxa

2

452
33

11

211

211

=

−=

−+−=

+−+−=

−+

++−

++−

An example is illustrated below.

Notice how the curve ‘pinches’ slightly against the chord at each endpoint as a result of the pure
reflection of the first and last segments about the endpoints.

The curve moves very smoothly through each knot. The Catmull-Rom spline has the additional
benefit that modification of a single knot only affects the curve near that knot (local control).
Since the Catmull-Rom blending functions do not sum to unity, the convex hull property is lost.

An arc-length parameterization and a little more flexibility with the auxiliary control points will
provide the basis for a general path-tweening class.

Closed Loops

The auxiliary control points at the beginning and end of the Catmull-Rom spline provide flexibility
for a variety of curve shapes, including closed loops. A common misconception among beginning
students is that these endpoints somehow form ‘tangent handles’. Recall that the tangent at any
knot is parallel to the chord between previous and successive knots. One of the simplest
strategies to create a smooth, closed loop is to place the outermost control points along the
chords into and out of the first knot. This is illustrated in the following diagram.

The knots are numbered 0-5 (the last knot is automatically added when the closed property is
set). The red marker indicates the first auxiliary control point. The green marker indicates the
outermost auxiliary control point. The direction of the vector from initial knot to each control point
is along the chord emanating from the first knot. The distance from first knot to both the second
and next-to-last knots determines the distance along each chord to place the auxiliary control
points. The first auxiliary control point is placed along the chord from the first knot to the next-to-
last knot, but at a distance equal to that from the first to second knot. The process is reversed for
the outermost auxiliary control point.

The method illustrated here was chosen for ease of illustration. The graphic illustration should
convince you of at least G-1 continuity. What would have to be modified for C-1?

References

1) Catmull, E. and Rom, R., “A Class of Local Interpolating Splines,” Computer Aided Geometric
Design, R.E. Barnhill and R.F. Reisenfeld, Editors, Academic Press, NY, 1974, pp. 317-326.

2) Kochanek, D.H., and Bartels, R., “Interpolating Splines with Local Tension, Continuity, and
Bias,” SIGGRAPH Conference Proceedings, July 1984, pp. 33-41.

